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ABSTRACT

Complete description of blood coagulation pathways with respect to patient-
specific characterization presents a major challenge. Characteristics of blood coagu-
lation vary drastically between patients. It is essential to characterize abnormalities
in blood coagulation to diagnose and treat cardiovascular diseases better.

Given the paucity of patient-specific data to characterize and model the system,
there is a greater need to regularize patient-specific models and methods effectively.
In this dissertation, we formulate actionable questions and describe our methodology
and results.

First, we explore a practical application for using models to classify acute coro-
nary syndrome and coronary artery disease. The classification models were built
based on a chemical kinetics model reported in the literature. In a diagnostic set-
ting, the classification models could be employed to screen thousands of patients
with greater certainty every year.

Second, we propose a simplified model for a key part of the blood coagulation
cascade that demonstrates robust predictive capabilities. The model predicts pro-
longed activity of thrombin, an important enzyme in the clotting process, in certain
plasma factor compositions. The activity sustains beyond the time which is con-
ventionally considered to be the end of clotting. This observation along with the
simplified model is a necessary step towards effectively studying clotting in realistic

geometries.
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NOMENCLATURE

ACS Acute coronary syndrome
CAD Coronary artery disease
GMM Gaussian mixture model
MDGini Mean decrease in gini index
0OOB Out-of-bag

factor 1 Fibrinogen

factor Ia Fibrin

factor 11 Prothrombin

ITa Thrombin

AT or ATIII Antithrombin

TFPI Tissue factor pathway inhibitor
Tt Tissue factor

APC Activated protein C
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1. INTRODUCTION"

“One 1is struck by the complexity of this figure that I am not even at-
tempting to draw.”

— Henri Poincare, New Methods of Celestial Mechanics

1.1 Chapter Outline

We motivate the problem by highlighting its socioeconomic burden. Then we
introduce the blood coagulation system, briefly review the corresponding literature,
and also elaborate the challenges faced while modeling and solving the chemical reac-
tion kinetics of blood coagulation. We describe the deficiencies in the area currently
and discuss alternative approaches that address these deficiencies. We also describe

the objective and scope.
1.2 Motivation

In the United States, heart diseases were the leading cause of death in the past
two centuries [1, 2]. Identifying patients at risk of acute coronary syndromes (ACS)
[3] and predicting progress of disease could help provide timely medical intervention;
understanding the physiology of the diseases in patient-specific terms could also help
design better drugs and monitor treatment more effectively.

ACS refer to a set of diseases® that results in a sudden failure of proper functioning

'In this dissertation, we do not distinguish between different types of ACS. The reader could
find relevant information here [3].

“Part of this chapter is reprinted with permission from “Random Forests Are Able to Identify
Differences in Clotting Dynamics from Kinetic Models of Thrombin Generation” by Jayavel Aru-
mugam, Satish T. S. Bukkapatnam, Krishna R. Narayanan, and Arun R. Srinivasa. PloS one,

€0153776, Copyright [2016] by Arumugam et al.
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of the heart. It is caused due to decreased or blocked blood flow in the arteries of the
heart [4]. Infarction can be avoided if flow to the affected artery is restored within
30 minutes but there is no salvage after 6 hours [5]. Timely intervention is critical
in reducing costs and saving lives [6].

The cost of ACS is more compared to other health conditions. Annual direct
cost in ACS is ~ $44,023 which is higher compared to ~ $9,955 in hypertension or
~ $13,858 in diabetes [7]. Advanced diagnostic modalities are expected to play a
major role in reducing unnecessary hospitalizations and hence the associated costs
[3]. In addition to diagnosing ACS properly, we would also like to monitor treatment
in patient-specific terms. For example, we would like to prognose the course of dis-
ease and predict mortality [8]. Treatment is known to cause excessive bleeding and
patients continue to be at risk of recurrence of heart diseases [9]. In certain ACS
patients, there is a strong association between bleeding and death [10]. Therefore
thorough bleeding assessments are recommended before administration of antithrom-
botic drugs [11].

However, bleeding is a complicated phenomenon and there is a drastic variation
in characteristics from one patient to another. Current methods to probe the co-
agulation system need improvement [12]. Better methods to model, evaluate and

characterize the system are sought.
1.3 Blood Coagulation Mechanism

Blood coagulation is a process which stops blood loss upon injury. Anand et al.
[13] comprehensively reviewed various mechanical and biochemical factors involved
in blood coagulation. In addition, models considering genetic, biochemical, and
mechanical factors in blood coagulation have been previously discussed [14, 15].

There are two ways to assess risk:
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1. Holistic approaches including considering the effect of factors like smoking, age,

air travel, lack of exercise, etc., on risk assessment.

2. Mechanism based approaches that study physiological changes in clotting and

associated biomechanical properties.

We will focus on mechanism based approaches where diagnosis and design of
cure happens. Different aspects of the physiology that are of interest towards disease

diagnosis, monitoring and treatment include:
e Mechanical properties of the artery [16].
e Non-newtonian fluid flow aspects of blood coagulation [17].
e Enzyme kinetics underlying coagulation [18, 19].

e Convection-reaction-diffusion models describing transport of platelets and the

protein factors that couple blood chemistry with fluid flow [13].

We will be concerned with the enzyme kinetics involved in blood coagulation
which act as a bottleneck for progress. Three major events occur during blood
coagulation: clot initiation, clot propagation, and clot disruption and dissolution.
Clot initiation is modeled using three pathways: i) the extrinsic pathway which is
initiated by tissue-factor, ii) the intrinsic pathway initiated by contact with a negative
surface like glass, and iii) initiation due to platelets.

Clotting dynamics is primarily studied based on the dynamics of a key enzyme
thrombin (IIa) [18, 20]. Once initiated, thrombin activates factor VIII and factor V.
This results in the formation of intrinsic tenase (IXa-VIIla) and prothrombinase (Xa-
Va) complexes which further activate thrombin. Thrombin catalyses the formation

of Fibrin (Ia). Fibrin is stabilized into stable clot by activated XIIla. Further aspects
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of clotting include clot dissolution and disruption. Most of these chemical reactions

occur on the surface of activated platelets.
1.4 A Brief History of Blood Coagulation

An excellent historical context and understanding of blood coagulation and its
alterations in disorders could be found in [21] and [22]. We briefly introduce the

‘classical” and the ‘modern’ theory of blood coagulation based on these two sources.

1.4.1 Classical Theory

Thromboplastin|

.......... ++
Prothrombin : Thrombin
Fibrinogen Thronbin > Fibrin

Figure 1.1: Classical theory of clotting. Clotting was explained based on four factors
(figure from [22]).

e Blood coagulation was thought of as physical changes in blood [21]. Hip-
pocrates and Aristotle tried to explain coagulation based on cooling. This
ancient theory has been invoked many times in the 17th century. William
Hewson showed blood could be thawed and that it liquifies before coagulation.
This disproved the cooling theory. Another physical explanation was cessation

of natural flow of blood?. This notion has stood the test of time.

2although controversial, the significance of this has been recognized by many eminent hematol-
ogists such as Virchow [23, 24]
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e Paul Morawitz, and independently Fuld and Spiro, gave the classical theory
of blood coagulation (see Figure 1.1) based on 19th century experiments [22].
Three factors - prothrombin, calcium ions, fibrinogen were present in blood. A
fourth factor thromboplastin (Tissue Factor Tf) was postulated to be contained
within cells like platelets and leukocytes. Tf was postulated to be extruded dur-
ing injury from damaged tissue cells. Tf reacted with calcium and prothrombin
to form thrombin, which converted fibrinogen to fibrin strands of a blood clot

22].

e In 1935, a test was developed based on the classical theory to study defects
in hemophilia patients [25]. This test entered clinical domain and goes by the
name prothrombin time [22]. This measures the time required to form enough

thrombin for clotting.

1.4.2 Modern Theory

e Two different models to initiate clotting were recognized. Clotting initiated
in the intrinsic pathway due to contact with external surface. Paul Owren
discovered discovered factor V [22]. This was followed by others and new
clotting factors were discovered. Thomas Addis found out adding globulin
fraction (factor VIII) improved delayed clotting time in hemophilia patients.
However, the experimental evidence was ignored since it was inconsistent with
existing theories [22]. Additional evidence surfaced due to the work of Patek
and Taylor [27]. They identified antihemophilic globulin, now referred to as
factor VIII.

e Paul Aggeler and others discovered Hemophilia B patients bled because of

factor IX deficiency [22]. Other biochemists discovered several factors involved
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Figure 1.2: Modern theory of clotting. Detailed schematic of clotting reactions in
the intrinsic and the extrinsic pathway (figure from [26]). This pathway considers
initiation due to the extrinsic as well as the intrinsic pathway. Polymerized fibrin
is the clot and its conversion from fibrinogen is catalyzed by thrombin. Actual
coagulation is known to be more complicated and models considering hundreds of
protein factors have been proposed.
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in the clotting phenomena. Inhibitors antithrombin and activated protein C
were discovered by studying thrombotic disorders such a venous thrombosis

22).

e Multiple active forms of thrombin were discovered [28]. Factors like V were
isolated and characterized [29]. Kinetics of active complexes involved in clotting
were studied. Thrombin generation simulation models [30, 31, 32] and platelet
activation models were developed [33]. Faster and better experimental methods
to estimate thrombin generation were designed [34]. Spatiotemporal models for
dynamics of clotting were developed [35] followed by comprehensive models for

blood coagulation [13].

1.4.3 Confluence

e There have been tremendous advancements in diagnosis, treatment [36], and
modeling [15]. Panteleev and Hemker [12] indicate that the standard assays are
not sensitive and specific for many major hemostatic disorders. Biochemists
and hematologists acknowledge the need to consider aspects of geometry and

flow [37].

e Taylor and Humphrey [38] reviewed open problems in vascular biomechanics.
Patient-specific geometry modeling, simulations with more realistic boundary
conditions, multiscale models that combine molecular mechanisms with clinical
manifestation are some of the discussed problems. Work in the field of biome-
chanics borrows heavily from the results of biochemists and the models for
blood coagulation that are currently in use are complex. A detailed depiction

of clotting reactions is shown in Figure 1.2.

e Model simplification is considered a necessity from both the sides.
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Figure 1.3: A schematic of process involved in patient risk assessment. Missing
links are highlighted in red. Data that are the most insightful and useful (diagnosis,
intervention, and cure primarily happens at this level) are shown in green.
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This is one of the best times to be involved in blood coagulation research. There
is a confluence of scientific fields. Tremendous improvements have been made in the
treatment of cardiovascular diseases but there is a still a long way to go (see Figure

1.3).
1.5 Abnormalities in the Blood Coagulation System

Typically, abnormality in coagulation could occur when:

1. one of the protein factors is missing or present when not needed.
Hemophilia or hypocoagulation has been extensively studied are usually due
to missing factors. The most important inactive factors and inhibitors are
shown in Table 1.1. Absolute deficiency in most these factors is either fatal or

leads to extreme disorders.

2. stoichiometry of certain factors are abnormal. Plasma factor composi-
tion affects the dynamics of reactions that happen during and after coagulation
[39, 40]. Adding a new dose of inactive plasma factors results in restoration of

thrombin generation without clot initiation triggers [41].

3. kinetics are abnormal. Rates are often a combined effect of all factors.
Moreover, the effect of rates is complicated due to complexity of chemical
kinetics. It could further create complications in other pathways, systems and
scales. For example, rates combined with diffusion could further determine the

size of the clot or with convection determine occurrence of clot downstream.

The absence of protein factors can be easily identified and dealt with. However,
abnormalities in stoichiometry or kinetics are harder to quantify. In most cases,

changes in stoichiometry have to quantified before changes in kinetics are observed.
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Table 1.1: Inactive plasma factors and associated diseases due to their deficiency.
Protein Associated disease due to deficiency
Factor VII | Rare, hemophilia-like bleeding disorder
Factor X Rare, bleeding disorders

Factor IX Hemophilia B

Factor II Bleeding disorders

Factor VIII | Hemophilia A

Factor V Rare, mild form of hemophilia
TFPI Thrombotic diseases
ATIII Thrombotic diseases

A simplified depiction of the extrinsic pathway of blood coagulation is shown in
Figure 1.4. Thrombin plays a central and a multifunctional role [18, 42]. Abnormal-
ities in the coagulation system are reflected in thrombin generation curves and offer
descriptive explanations. In the last two decades, sustained interest has been shown
in empirical and computational thrombin generation assays [43, 44, 45, 46| to study
the coagulation system under abnormal conditions and to use it for patient-specific
diagnosis and treatment. The aim is to quantify hypo- and hypercoagulable states
of blood using thrombin generation curves compared to those in healthy individuals
[47, 40, 48].

Simulations of thrombin generation during blood coagulation in the extrinsic
pathway is known to discriminate ACS and coronary artery disease (CAD) [49].
When the simulations results are compared for the thrombin generation parame-
ters, samples from the two groups differ in a statistically different way. Thrombin
generation is higher in ACS population suggesting hypercoagulation. Further, the
blood coagulation reactions in acute myocardial infarction patients is known to be
markedly modified compared to CAD patients [50].

Similarly, thrombin generation is higher in chronic obstructive pulmonary disease

10
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Figure 1.4: A schematic of the extrinsic pathway. We restrict our study to the class
of models that focus on the extrinsic pathway. There is clot initiation due to Tf.
Then the reactions proceed to the propagation phase where thrombin reaction rates
explode is in a positive feedback loop due to tenase and prothrombinase activation.
Thrombin catalyzes fibrin formation which is further stabilized into clot.

[51, 52], acute cerebrovascular disease [53], and rheumatoid arthritis [54]. Further,

clot properties are known to be affected in such hypercoagulative systems [55].
1.6 Challenges in Modeling the Coagulation System

Many challenges centered around the chemical kinetics aspect arise in modeling

and simulating the system:

e Need to identify sensitive risk factors: There is need for better phenotyp-
ing of coagulation system [56]. Available assays (referred to as the ‘coagulo-
gram’) fall short of effectively characterizing the status of blood chemistry [12].
Hypercoagulable diseases like venous thromboembolism do not have readily

identifiable and sensitive risk factors [57].

e Need to identify useful aspects and methods to validate: It is not clear

11
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Transparency

Models of TF initiated blood coagulation
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system

Numerical simulation
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Synthetic plasma + platelets
Citrated plasma + phospholipids
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Contact pathway inhibited whole blood B
Q.
<
Flow chambers A
Ex vivo vessel segments
Open
v >system
Animal models v
Human pathology J

Figure 1.5: Models and transparency (figure from [58]). Simulations are consid-
ered to be more transparent compared to experiments in real systems. However,
the opaqueness of real systems are often reflected as inadequacies in the simplified
models. There is drastic room for improvement by establishing consistency between
various systems. Simulations could be used to identify critical experiments. Itera-
tively, experiments could be used to correct our models and improve simulations.

12
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which aspect of the simulation data is useful to make risk assessments even
while using model results as a black-box. Obtaining insights is much harder
due to a lack of established procedures to extract relevant aspects of the results

for further analysis (see Figure 1.5).

There is uncertainty regarding the type of the blood used or viable for study
(Platelet-rich plasma PRP, Platelet-poor plasma PPP, in vivo, in vitro, syn-
thetic); our understanding of the various mechanisms involved, the function-
ality of different chemical species is still incomplete. The agreement between
empirical results and model simulations even for thrombin generation curves
is disputed (see Figure 1.6). For example, Hemker [59] mentions ‘mostly used’

models ([60, 61, 62] do not match experimental curves of thrombin generation.

1077 Different Thrombin Generation Models
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Figure 1.6: Two different thrombin generation models in the extrinsic pathway. Iden-

tifying critical aspects in model simulations based on clearly defined context such as
disease classification would be a first step towards improving the models.

There is uncertainty in the measurement of various parameters like the rate
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constants [63]. Some of the rate constants are not directly measurable. For
example, many rate constants in the extrinsic pathway model were indirectly
inferred [32, 60]. Further, there are at least two other versions even for the
extrinsic pathway model [64, 65, 66]. This could be attributed to the fact that
comparing model simulations with few experimental data does not suffice and

the critical aspects of model simulations need to be clearly established.

All 34 Species in the Extrinsic Pathway Model
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Figure 1.7: Concentration of different species during clotting in the extrinsic path-
way. The concentration of various species varies by orders of magnitude. The poses

stiffness issues in numerical schemes demanding small time steps and excessive con-
ditioning.

e Solving is hard and expensive: Concentrations of protein factors and rates
of reactions often vary by orders of magnitude (see Figure 1.7). The nonlinear
chemical kinetics problem is modeled using reaction rates that have quadratic

terms, the model is very stiff and solution trajectories are unstable in many
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directions [67] (see Figure 1.8). The rates involve negative feedback loop or

cycles in the reaction cascade [68].

Moreover, numerically solving stiff chemical kinetics is computationally expen-
sive. The solvers for chemical kinetics are time and memory consuming when
augmented with spatial and flow aspects. Coagulation is known to vary drasti-
cally in patients. A simplified model is desirable so that augmenting chemical

kinetics in fluid flow solvers in patient-specific terms become feasible.
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Figure 1.8: Eigenvalues of reaction rates in thrombin generation simulation. At any
given point in time, the reaction trajectories are unstable in more than five directions
(figure from [67]). This poses stability issues in numerical solutions.

Recent studies have tried to augment thrombin generation with convection-reaction
systems [69, 70, 71]. In patient-specific studies of Papadopoulos et al. [71, 72|, the
focus is primarily on the effect of geometry. They use a simplified thrombin genera-
tion model to study the effect of vessel geometry. However, in order to understand

the effect of reduced models, the abnormalities in coagulation system need to be

15

www.manharaa.com




identified and quantified systematically.

We would like to have the following towards realistic patient-specific simulations:

e We would like to find critical features that are useful for diagnosis and that are
possibly useful for understanding the complicated physiology behind coagula-

tion in simple terms.

e We need a simplified chemical kinetics model that could be augmented with

other models in order to perform useful patient-specific simulations.

The following question naturally arises: How do we simplify the model describing

chemical kinetics? The simplified model,
e should be practically useful for making decisions.

e should be easier for patient-specific simulation and to augment with the simu-

lations of other aspects like flow properties.
e should offer physiological insight.

We would like to understand and quantify the limitations of the reduced model.
Further, given that the search space is huge and the experiments costly, we would like
to identify potential candidates for further research. For example, based on a well
defined purpose such as classification of diseases, we would like to quantify model
performance.

We will make use of recent advances in machine learning algorithms and statistical

learning theory to study the thrombin generation system.
1.7 Machine Learning

The core idea of machine learning is to use information about certain training

samples to predict responses for new test samples (see Figure 1.9). The training and
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Figure 1.9: Schematic of the learning process. The core idea of machine learning is
to use certain training samples to predict responses for new test samples.

the test samples are assumed to drawn from the same population. Machine learning
tools are useful in systems where the involved physical laws are too complicated to
model but data-driven predictions could be applied efficiently. Offering non self-
evident solutions to ill-posed problems is the hallmark of learning theory [73, 74] and
machine learning algorithms [75]. Learning theory and algorithms have been applied
in a wide range of problems and fields such as bioinformatics, machine perception,
medical diagnosis, economics, and social network analysis.

Our hypothesis is that it is possible to systematically use machine learning tools
to obtain greater insight about the coagulation cascade. In particular, we will quan-
tify and characterize useful information in high-dimensional data from solutions of
equations involving nonlinear chemical kinetics model. We will do so by studying
classification of ACS from CAD. We will use information on thrombin generation
from a patient’s blood sample to classify if a given patient has ACS. Further, we
will use classification performance as a way to identify critical aspects of the model.

Such critical differences could help us come up with simplified models.
1.8 Objective and Scope

Main algorithms and ideas used in this thesis include:
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e Maximum entropy distributions for sampling patient data from population

data.

e Density estimation using expectation maximization of Gaussian mixture mod-
els (GMM): In order to classify ACS using thrombin generation parameters,
we need to model their densities. We model density of thrombin generation
attributes using GMM. Finding GMM parameters is a hard nonlinear problem.
Expectation maximization [76] offers a clever solution to the difficult nonlinear
problem. The design of the algorithm and the guarantees of its convergence
gives a flavor of ideas in machine learning. This is the starting point for many
sophisticated applications as well as generalizations.

We introduce the challenge of ill-posedness encountered in many learning prob-
lems via the example of parameter estimation in GMM. We briefly discuss how

solutions are regularized in such a scenario.

e Classification using Random Forests: We use Random Forests [77, 78] to clas-
sify ACS from CAD using attributes from the full model. Random Forests
exploits two key ideas to effectively deal with high-dimensional data: i) Use
of ensembles of base learners, ii) and use of random subset selection. Both
these aspects together avoid overfitting problems while dealing with sparse
data. Moreover, the underlying base learner is nonparametric, and invariant to
monotone transformations of data making it suitable to study chemical kinetics
data. Further, Random Forests offer strong feature selection as well as error

estimation tools.

We study blood coagulation using a model for the Tf-initiated extrinsic pathway
developed by Hockin et al. [60]. Specific problems addressed in this dissertation in-

clude: i) simulation of patient-specific thrombin generation, ii) likelihood estimation
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of thrombin generation parameters using expectation maximization, iii) classifica-
tion of high-dimensional feature space using Random Forests, and iv) identification
of critical aspects of the thrombin generation model.

Based on the insights gained from the results, we also propose a simplified

model for the dynamics of thrombin.
1.9 Structure of the Dissertation

The structure of the dissertation is as follows:
1. Introduction in this chapter

2. We introduce the thrombin generation system. We describe patient-specific

simulation and classification of thrombin generation.

3. We use expectation maximization algorithm and GMM to characterize and
classify ACS and CAD based on summary parameters used to describe dynam-

ics of thrombin [18, 45].

4. We extract features to characterize data from all the chemical factors in the
model and use Random Forests to classify ACS and CAD [79]. We also perform
feature selection in order to reduce the number of features used for classifica-

tion.
5. We propose a simplified model for the dynamics of thrombin.

6. We discuss future research directions.
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2. PATIENT-SPECIFIC SIMULATION OF THROMBIN GENERATION"

“These models are not a panacea nor are they a replacement for empir-
ical fishing, but they are a useful thinking tool.”
— Kenneth G. Mann, [58]

2.1 Chapter Outline

In this chapter, we describe the thrombin generation system in greater detail.
In addition to patient-specific variation of chemical factors in thrombin generation
systems, we describe how these variations are associated with ACS and CAD. We,

also, describe patient-specific simulations and sampling required data for simulations.
2.2 Thrombin Generation

A schematic of the major events involved in clotting is shown in Figure 2.1. Clot

initiation is modeled by three pathways:

1. Intrinsic pathway: Clotting in the intrinsic pathway is initiated when blood

comes into contact with an external surface like glass.

2. Extrinsic pathway: Clotting in the extrinsic pathway is initiated by Tf. Tf
proteins are embedded in the vessel walls and are hypothesized to be exposed
to flowing blood due to injury. This pathway is the major cause of in vivo

clotting. Tf activates factor VII to factor VIIa. This is followed by formation

“Part of this chapter is reprinted with permission from “Random Forests Are Able to Identify
Differences in Clotting Dynamics from Kinetic Models of Thrombin Generation” by Jayavel Aru-
mugam, Satish T. S. Bukkapatnam, Krishna R. Narayanan, and Arun R. Srinivasa. PloS one,

€0153776, Copyright [2016] by Arumugam et al.
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Figure 2.1: Major steps involved in blood clotting. We consider clot initiation in the
extrinsic pathway along with thrombin propagation and termination.

of extrinsic tenase complex (Tf-fVIIa). The complex activates factors IX and

X to form activated factors IXa and Xa.

3. Platelets: Clotting is also activated by platelets. In hypercoagulative blood,

spontaneous clotting could occur due to platelet aggregation.

Tissue Factor Pathway Inhibitor (TFPI) regulates clot initiation. Activated factor
Xa activates prothrombin to form thrombin. If thrombin concentration is above a
certain threshold, clotting propagates via a different set of reactions [80]. This control
mechanism likely functions to avoid excessive clot due to false triggers. Thrombin
activates inactive factors VIII and V. This results in the formation of intrinsic tenase
and prothrombinase complexes which further activate thrombin. Thrombin catalyses
formation of Ia. Ia is stabilized into stable clot by activated XIIla. Thrombin and
other active factors are inhibited by ATIII and APC.

A schematic of the Tf-initiated extrinsic pathway model we used is shown in

Figure 2.2. The model does not account for the effect of the inhibitor APC. We
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Figure 2.2: Schematic of the extrinsic pathway model for thrombin dynamics used
in this work. This is the simplest nontrivial patient-specific model that has demon-
strated practical use.

also note that there are at least two other versions of this extrinsic pathway model
[64, 65, 66]. We use the simplest nontrivial version for this study [60]. There are 34
species undergoing 42 reactions in this model.

Thrombin generation upon tissue factor initiation is usually monitored using ac-
tivity of thrombin and thrombin-antithrombin (TAT) activity. The model accounts
for dynamics of two forms for thrombin (refer to Figure 2.3). One form is more active

compared to the other and net thrombin activity is appropriately defined.
2.3 Patient-Specific Simulation

Thrombin generation varies from one patient to the other. In addition, there is
often considerable variation within a patient. The source of the variation is modeled
as changes due to plasma factor composition, i.e., the change in concentration levels

of the inactive protein factors in the blood before clot initiation.
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Figure 2.3: Two forms of thrombin are modeled. Active thrombin is defined based
on activity of thrombin measurement (which is Ila + 1.2 mlla). Ila is the alpha-
thrombin and mlla is the meizo-thrombin. Thrombin is inhibited by antithrombin
ATIII. Thrombin-ATIII (TAT) complex is often measured to infer clotting proper-

ties. It is essential to account for the two forms in order to satisfy stoichiometry in
simplified models.
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Table 2.1: Physiological mean plasma factor composition. VIIa is set at 1 % of factor
VII. Data reported in [60, 66].

Protein Factor | Mean Value | Normal Range
(M) (Percentage)

TF 5.0E-12, Varied | Controls trigger level
VII 1.0E-08 60 - 140

X 1.6E-07 60 - 140

IX 9.0E-08 69 - 151

IT 1.4E-06 60 - 140

VIII 0.7E-09 64 - 232

\Y 2.0E-08 60 - 140

TFPI 2.5E-09 46 - 171

ATTII 3.4E-06 88 - 174

Mean physiological values of the eight initial inactive coagulation factors that
are considered in this model are shown in Table 2.1. There is considerable variation
of concentration of these factors in a given population. Thrombin generation has
been used to phenotype such variations. For example, deficiency of factor VIII alone
is not known to cause serious bleeding. Composite effect of all the protein factors
determines the propensity of blood to clot. This is reflected in thrombin generation
curves. Thrombin generation simulation curves in two Hemophilia A patients with
factor VIII deficiency in Figure 2.4. Further, treatment is usually known to affect
these results drastically.

We are concerned about thrombin generation in ACS and CAD patients. Simula-
tions of thrombin generation is known to discriminate ACS and CAD [49]. When the
simulations results are compared for the thrombin generation parameters, samples
from the two groups differ in a statistically significant way. Thrombin generation is
higher in ACS population suggesting hypercoagulation. Thrombin generation curves
for the mean plasma factor composition in the two populations are shown in Figure

2.5.
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Figure 2.4: Thrombin generation in two hemophilia patients. Hemophilia A patients
with factor VIII deficiency (set to 1 % of physiological mean in simulations). Though
both the patients had initial factor VIII percentage value to be 1% of the physiological
mean, the thrombin generation is significantly different due to other changes in the
other inactive factors. This information has potential utility to monitor hemophilia
treatment via recombinant factor VIII administration [81, 66].
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Figure 2.5: Thrombin in generation in ACS and CAD population mean. The net
effect of changes in initial reaction is comprehensively captured in thrombin gener-
ation rates. Further, thrombin generation is higher in ACS population compared
to CAD population. We will extract appropriate features to characterize the curves
and describe such differences.
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Most of the thrombin generation studies have been conducted to identify mark-
ers that differentiate groups in a statistically significant way. Given that, only the
mean and standard deviation data for the groups are usually reported in these stud-
ies. In this work, we are interested in patient-specific classification instead of group
comparison, i.e., we want to classify if a given patient likely belongs to one group
compared to the other(s). Such simulations need patient-specific plasma factor com-
position. Using appropriate tools, we numerically sample such patient-specific data

from reported population data. We describe our sampling procedure next.
2.4 Sampling Using Maximum Entropy Distributions

To get the initial condition data for the clotting model, we used reported mean
and standard deviation data of the procoagulant and anticoagulant factor percentages
in ACS and CAD populations [49]. To generate samples for these non-zero factors
from the mean and standard deviation data, we use the maximum entropy principle
[82]. The idea is to obtain a distribution that maximizes information entropy [83]
subject to known constraints. Information entropy of a probability distribution p(z)

of a random variable x is defined as,

H =~ [ p(@)log(p()). (2.1)

The principle essentially restricts the class of probability distributions to those sat-

isfying the given constraints by looking for functions that maximize,

plw) = argmin [ p(@)log(p(x) (2:2)

p(z)

st. fip(x))=0, i=1,...,N. (2.3)
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where f;(p(x)) are the known constraints.
When the constraints are moments of the probability distribution function, i.e.,
fi(p(x)) = Elgi(z)] where g;(x) is an arbitrary function and E[.] is the expectation,

the solution could be expressed as,

() = 5 expl3 igi(a)] (24

Z z/exp[z Nigi(z)], (2.5)

where 7 is the partition function and \; are Lagrange multipliers which are found

based on the given constraints.
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Figure 2.6: Sampled factor VIII values in hemophilia patients. Significance of using
lognormal distribution of sampling initial factors.

By the maximum entropy principle, the probability distribution that best repre-

sents a positive random variable given mean and standard deviation is the log-normal
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distribution [84]. Essentially mean, standard deviation, and nonnegativity are the
three prior constraints we imposed based on the data available for plasma factor com-
position. The samples for each initial factor level were generated from log-normal
distributions.

Using log-normal ensures that the sampled values are positive, for example, initial
factor percentages sampled for hemophilia patients are shown in Figure 2.6. Also,
unlike the symmetric Gaussian distribution, the lognormal distribution is skewed

toward zero.
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Figure 2.7: Plasma factor composition in ACS and CAD patients. Variation of
sampled initial factor levels in ACS and CAD (data obtained from [49]).

We sampled 200 sets of percentage values for the initial coagulation factors in
each class (ACS and CAD). Box plots for sampled data for ACS-CAD population

are shown in Figure 2.7. Compared to CAD data prothrombin (FII), factor VIII, and
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TFPI are higher and ATIII is lower in ACS data (see Figure 2.8 for scatter plots).

These percentage values were scaled using the physiological mean values [60] and we

obtained thrombin generation parameters by solving the chemical kinetics problem

for each sample.
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Figure 2.8: Sampled data of plasma factor composition in ACS and CAD. Only those
factors that significantly differ in the two groups are shown. Note that the data are
almost isotropic because our sampling assumes that the factors are independent of
each other.
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2.5 Piecewise Polynomial Representation of Simulation Profiles

Simulations were carried out using MATLAB!. Thrombin generation simulations
were initiated with 5 pM trigger TF. Solution profiles for all chemical species were
obtained for 3600 seconds using ‘ode15s’ stiff solver available in the standard library.
The method finds solutions to the differential equations y' = F(¢,y) by approximat-

ing it using a numerical differentiation formula of the following form [85],

k
(1= )% (Y1 — 00) + D2 WV — hF (b1, Yopr) = 0. (2.6)
m=1

The implicit approximation is solved using a simplified Newton method [85]. The
absolute tolerance for the method was set as le-15 M for all variables in the model
and numerical convergence was corroborated (see Figure 2.9).

We normalized the simulation profiles by their respective physiological mean peak
values and fit them with piecewise cubic hermite interpolating polynomials (PCHIP)
[86] using ‘pchip” function. Data in each profile was divided into pieces (time inter-
vals), and a cubic polynomial was fit in each piece while ensuring smoothness across
pieces. PCHIP technique ensured the resulting interpolation changed monotonically
in each interval, thereby avoiding spurious oscillations inherent in a regular spline
interpolation.

Approximation using 14 pieces and using regular spline interpolation are shown in
Figure 2.10. Even in the context of interpolation, we can notice one of the models is
too complex and starts overfitting. By ensuring monotone changes between knots or
the approximation points, PCHIP essentially looks for a restricted class of solutions

compared to cubic spline approximation. This problem is more difficult in case of

'MATLAB 8.5.0, The MathWorks, Inc., Natick, Massachusetts, United States.
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Figure 2.9: Convergence check for the numerical solution. Solution profiles for ac-
tive thrombin obtained using different values of absolute tolerance in the numerical
solution scheme. We used an absolute error tolerance of 1le-15 M for the simulations.
Differences and oscillations below the error tolerance were neglected.
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Spline Approximation of Numerical Solution
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Figure 2.10: Piecewise polynomial representation of simulation data. By ensuring
monotone changes between knots or the approximation points, PCHIP essentially
looks for a restricted class of solutions compared to cubic spline approximation.
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regression where we will have to account for data noise. One has to restrict the
solutions by compromising between the available sparse and noisy data and model
complexity.

We used 139 pieces - each of length approximately 26 seconds. This captured fast
changes, such as the time it takes for Tf-fVIla to reach its first peak since addition
of the trigger, reasonably well. PCHIP representation serves two purposes: i) it
efficiently stores large amounts of simulation data; and ii) since the polynomials
represent data well, the coefficients of the polynomials could act as features for

classification.
2.6 Conclusion

We have addressed the problem of patient-specific sampling using maximum en-
tropy distributions. We assumed that the data were independent of each other.
Interdependence of factors in thrombin generation has often been overlooked in the
literature. If not posed and solved properly, this is a hard problem. While introduc-
ing patient-specific classification in the next chapter, we also address the problem of

describing and inferring such dependence without the independence assumption.
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3. DENSITY ESTIMATION USING EXPECTATION MAXIMIZATION

“I have had my results for a long time: but I do not yet know how I am

to arrive at them.”

— Johann Carl Friedrich Gauss!

3.1 Chapter Outline

We use expectation maximization of GMM to characterize thrombin generation
parameters. We use it to classify ACS and CAD. We also discuss alternative ap-

proaches to solve these problems using non-self evident restrictions.
3.2 Simulation of Thrombin Generation Summary Parameters

Brummel-Ziedens et al. [49] studied alterations in thrombin dynamics between
ACS and CAD. Features of thrombin profile like maximum value, area under the
curve, and maximum rate were higher in ACS than CAD, suggesting hyper-coagulability.
The question we address is the following: using simulation results of the thrombin
generation curves, can we find the probability that a new curve is from an individ-
ual having ACS instead of CAD? Effective answer to this question could be used to
screen patients for better monitoring.

We extracted the following features that characterize active thrombin [49] (see

Figure 3.1):
1. time to reach 2 nM
2. area under the curve

3. maximum level reached

Lquoted by A. Arber in ‘The Mind and the Eye’ 1954
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4. maximum rate of generation
5. time to reach maximum value
6. time to reach maximum rate.

Time to reach 2 nM of thrombin in the extrinsic pathway is related to prothrom-
bin time; area under the curve is related to the thrombin generation potential [87].
Further, thrombin generation measurements could be used to obtain the other fea-

tures.

| Max rate
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Figure 3.1: Thrombin generation summary parameters. Figure from [66]. Time
2 nM of thrombin and area under the curve are related to prothrombin time and
endogenous thrombin potential respectively.

To better explain the issues with density estimation and to introduce more ad-
vanced algorithms, we consider just two of the summary parameters namely ‘T2nM’
(time to reach 2 nM from the start of the simulation) and ‘Maximum Rate’ (maxi-

mum rate of activation in active thrombin). The data was nondimensionalized using
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the maximum values from the ACS population. Nondimensionalized thrombin gen-
eration summary parameters are shown in Figure 3.2. We proceed with building a

classifier to distinguish data points with regards to different disease conditions.
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Figure 3.2: Maximum rate and time to 2 nM in thrombin generation. Summary
parameters of thrombin generation for ACS and CAD population. Time to reach 2
nM of thrombin is faster in ACS population compared to CAD population. Similarly,
maximum rate of thrombin generation is higher in ACS population. This suggests
tendency of blood to clot more in ACS population.

3.3 Gaussian Mixture Models

To answer the above question, we classify given data from thrombin generation

simulation into ACS or CAD group using Gaussian Mixture Model (GMM). Let

r = [T2nM, MaxRate]” (3.1)

37

www.manharaa.com




denote the vector representing thrombin generation parameters. We consider soft
classification where each data point has probability of belonging to either class.
Given two classes (G7 and GG, which are mutually exclusive, the posterior probability
density of a group is,

P(Gi)P(z|G))
P(G1)P(x|Gy) + P(G2)P(x|Ga)’

P(Gy|z) = i=1,2. (3.2)

where P(G;|x) is the posterior class probabilities for a given data point, p(G;) is the
prior probability of the classes, and P(x|G;) is the likelihood of the data conditional
on the class.

If we can estimate P(G4|x), we can find the posterior using a suitable prior. What
we know is only samples of data from the two classes. We construct a GMM for each
class using the known samples of data. The likelihood function for a group P(z|G)

is approximated using a multivariate GMM,

BN (%, £ 33

=

plr]ACS)

=
[y

=1l

p(x|CAD) = 3 af PN (4P, 57AP) (3.4)

.
Il
—_

where K is the number of components in the GMM and N (u;, ;) is multivariate
normal distribution with mean p;, covariance >;, and «; is the probability of each

component. An example is shown in Figure 3.3.
3.4 Expectation Maximization

The problem of approximating the likelihood function reduces to finding the pa-

rameters 6 = {«, 11;, X;} of the GMM that explain the data the best. A standard way
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Figure 3.3: An example of a 2 component GMM.
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to pick the parameters is by maximizing the likelihood function (or equivalently the
log of it) called the maximum likelihood estimate (MLE). This is a simple problem if
we know how each data point is generated, i.e., information pertaining to component
identity. However, both this information as well as the parameters of GMM are not
available. This makes the resulting likelihood function non-convex and a closed form
MLE for this function is not known. In such a scenario, an efficient way to find the
parameters is by using the expectation maximization algorithm [88] and [76].
Expectation Maximization (EM) algorithm finds the solution iteratively by ap-
proximating the likelihood function by a convex function which is a tight lower bound
and then maximizing it. Let y be the incomplete data which denotes component

identity for each data point. The algorithm iterates between two steps:

1. Expectation step: Find expectation of the log-likelihood Q (0, 0;_1) using the

parameters #;_; from the previous step,
Q(0,0;-1) = Ellog(p(z,y0))y, ;1] (3.5)

2. Maximization step: Find new value 6; for the mixture parameters by maxi-

mizing the above likelihood.

0; = argmax Q(6,0;_1) (3.6)
0

3.5 Classification Results

The results for likelihood estimation are shown in Figure 3.4 for ACS and CAD
respectively. We use non-informative priors for class probabilities, i.e., the prior

probability of each class is the same (p(G1) = p(G2) = 0.5). We consider the
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posterior probabilities of the 400 samples used to train the GMM. The samples are
ordered such that the first 200 are from the ACS class and the last 200 belong to the

CAD class.
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Figure 3.4: Contours of likelihoods for the thrombin generation parameters. GMM
contours of the likelihood function for the thrombin generation parameters estimated
using the EM algorithm.

The predicted probabilities that a sample belongs to the ACS class and CAD
class is shown in Figure 3.5. The predicted probabilities that the sample belongs
to ACS are high for the first 200 points and low for the last 200 points. The test

accuracy was calculated on 40 randomly sampled data from each class that was not
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used for training. The mean classification accuracy was 77 %. Due to the use of

sampled data for the plasma factor composition, we do not further distinguish errors

in each class separately.
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Figure 3.5: Predicted ACS/CAD probabilities. For each sample the predicted prob-
ability that it belongs to ACS (blue) or CAD (red) group is shown. The first 200
samples are from ACS. Samples 201 to 400 are from the CAD group. The first 200
samples are predicted to have a high probability of belonging to class ACS and CAD.
The mean test accuracy was close to 77 %.

3.6 Paradigm Shift

Expectation maximization is a powerful algorithm. In mechanics, it is useful in

the context of deformable surface tracking [89, 90] and discrete optimization formu-

lations of certain hard mechanics problems such as buckling of beams constrained to

a tube [91, 92]

GMNDMs face the curse of dimensionality if used to model features of all protein
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factors using sparse data. For a full GMM, the number of parameters grow as
(K —1)+ Kp+ Kp(p+ 1)/2 where K is the number of components and p is the
dimension of the feature space [93]. This results in ill-conditioning of the parameter
estimation problem. The problem is worse in case of nonparametric extensions such
as Dirichlet process mixture models [94] which does not restrict the number the
mixture components. Notice that this is not a problem with the EM algorithm but
with the M-Step of the EM algorithm where the parameters are estimated.

Density estimation is not a necessary step in order to make classification. Statis-
tical learning has made tremendous advancements using this idea (see Figure 3.6).
Parameter estimation in high-dimensional problems is often ill-conditioned. This
demands better algorithms and approaches. Non self-evident restrictions and solu-
tions to such ill-posed problems is the hallmark of machine learning and statistical
learning theory. Some of the approaches include using ensembles [77, 95], exploiting
sparsity of data [96], efficient use of sampling [97], inference [98], subsets and sparse

data [99, 77|, better and efficient models for the covariance structures [100].

“If you possess a restricted amount of information for solving some prob-
lem, try to solve the problem directly and never solve a more general
problem as an intermediate step. It is possible that the available infor-
mation is sufficient for a direct solution but is insufficient for solving a

more general intermediate problem.”

— Vladimir N. Vapnik, Statistical Learning Theory [73].

3.7 Conclusion

We used GMM to estimate densities of thrombin generation summary parameters.

The approach described in this chapter can be used to systematically classify coagu-
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Figure 3.6: Different classifiers, mean test accuracies, and their decision boundaries.
Most of these methods demand lots of parameter tuning. Further issues include
model selection and significant feature selection.
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lation disorders using data from thrombin generation parameters [45], plasma factor
composition [49], and thromboelastography [101]. Estimation of densities of plasma
factor composition could be one the most important applications of the methods
used in this chapter.

We, also, discussed how classification in higher dimensions demands better strat-
egy and regularization is one of them. We choose Random Forests to proceed further

with the high-dimensional classification problem.
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4. HIGH-DIMENSIONAL CLASSIFICATION PROBLEM"

“The limits of my language mean the limits of my world.”

— Ludwig Wittgenstein, Tractatus Logico-Philosophicus (1922)

4.1 Chapter Outline

Random Forests is a nonparametric classification method that stands up to its
name. Perhaps, a lot more. Unlike GMMs, Random Forests are effective in dealing
with high dimensional data. Further, we use Random Forests to classify and to find
significant aspects in the thrombin reaction network. In particular, we find significant
chemical species and their location in time during clotting that could be useful for

classification.
4.2 Introduction

Current efforts towards patient-specific characterization include differentiating
systemic changes to blood coagulation in ACS from CAD populations [50]. Blood
is observed in a hyper-coagulable state after ACS [102]. Brummel-Ziedens et al.
[49] studied alterations in thrombin dynamics between ACS and CAD. Features of
thrombin profile like maximum value, area under the curve, and maximum rate were
higher in ACS than CAD, suggesting hypercoagulability.

The nature or extent of the hypercoagulability!, as well as its relation to and its

presence before the acute condition are not well understood. This could be attributed

LA recently published review article on this [103].

“Part of this chapter is reprinted with permission from “Random Forests Are Able to Identify
Differences in Clotting Dynamics from Kinetic Models of Thrombin Generation” by Jayavel Aru-
mugam, Satish T. S. Bukkapatnam, Krishna R. Narayanan, and Arun R. Srinivasa. PloS one,

€0153776, Copyright [2016] by Arumugam et al.
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to at least two reasons: i) lack of assays to efficiently and effectively determine the
status of blood chemistry [12]; and ii) lack of adequate statistical and mathematical
tools to understand blood coagulation system involving large numbers of variables.
Recently there have been attempts to study changes in factor Xa (fXa), in another
hyper-coagulable condition - deep vein thrombosis, using computational models [104].
Features similar to those used for thrombin were used to describe fXa. We have good
prior knowledge about thrombin and fXa, which are both active chemical species that

play significant roles in clotting. Naturally, the following questions arise:

1. Do the dynamics of any other chemical species change significantly?
2. Are there better features to characterize changes in the system?

3. Can we efficiently assay the entire system without losing much information

pertaining to classification?

We study blood coagulation using a model for the Tissue factor(Tf)-initiated
extrinsic pathway developed by Hockin et al. [60]. The model uses a system of
ordinary nonlinear differential equations to describe dynamics of thrombin evolution.
The model has copious empirical validation and has been previously used for risk
analyses between ACS/CAD [49]. The number of chemical species involved is large
(34 in this case), and their responses are varied, typically requiring large numbers of
features to represent the time profiles.

We use a non-parametric statistical learning algorithm - Random Forests [77] to
classify ACS and CAD populations. Random Forests can be used to capture highly
nonlinear class boundaries, and is robust to outliers in data and to lots of noisy
features. Random Forests technique allows us to filter significant species and find

their critical aspects. Moreover, unlike the current use of isolated features for group
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comparisons prevalent in thrombin generation literature [45], use of Random Forests
here exploits the role that interactions of features play in order to classify data into

various groups.
4.3 Feature Extraction from Simulation Profiles

The central idea of the scheme is to consider the data points (simulation profiles)
as a “noisy-image” in a very high-dimensional space from which we try to extract
features with semantic attributes like “concentration is high”, “concentration pro-
file is sharply curved”, etc. This was implemented by extracting different kinds of
features and using them in the classification study to characterize the system.

In order to capture the dynamics of each species at different times during the
simulation, we use the PCHIP coefficients as features. Since there is a lack of classi-
fication study to compare this work with, we used classification results of the plasma
factor composition (initial conditions data used for the simulation), and the features
that are conventionally studied to compare with the performance of PCHIP fea-
tures considered here. Moreover, we study a fourth set of features which have the
possibility of direct experimental observation.

The list of features we extracted and used for classification include the following

four sets:

1. PCHIP features to characterize dynamics - this set includes 18904 PCHIP
coefficients obtained during data representation. This set uses two datasets
[49, 60] as described at the beginning of the section Methods. We used 139
pieces - each of length approximately 26 seconds (the representation is shown
in Figure 4.1). For a given species, there are 4 coefficients in each time interval.
The coefficients are such that the fit polynomial in an interval starting at t;

has the form Ci3(t — t;)® + Cio(t — ;)% + Ciy(t — t;) + Cip. These coefficients
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have information pertaining to function values and derivatives up to 3 orders
at time ¢;. Information in second and third derivatives is expected to be weak
as PCHIP enforces monotonicity. Variables corresponding to the two forms of

thrombin, ITa (alpha-thrombin) and mlla (meizothrombin), were interpolated

separately.
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Figure 4.1: Spline representation of simulation data. The number of approximation
knots were chosen to be 140 based on the response of one of the fastest reacting
variables Tf-fVIla-Xa.

2. Plasma factor composition - this set consists of 8 non-zero initial condition

percentage values of procoagulant and anticoagulant factors used for model

simulations [49]
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3. Conventional features - this set consists of 11 features used to character-
ize active thrombin [49] and fXa profiles [104]. This includes time to reach 2
nM (for active thrombin), area under the curve for active thrombin and fXa,
maximum level reached by active thrombin and fXa, maximum rate in ac-
tive thrombin and fXa profiles, time to reach those maximum levels for active
thrombin and fXa, and time to reach maximum rates for active thrombin and

fXa. Data from two datasets [49, 60] are used in this set.

4. Moving averages of concentration values - this set consists of 200-second
moving average (200s-MA) features extracted at uniform time intervals. For
each chemical species, we extracted these 18 time-averaged function values of
simulation profiles (1/200 [72% x(t)dt, where x(t) is concentration of a given
species) at every 200 seconds starting at 100 seconds. 612 such features were
extracted from all species (18 each for 34 species). This set makes use of
two datasets [49, 60]. These features localize significance of each species in a
time frame of about 3 minutes. Moreover, averaging over time gives a more
robust feature with respect to time lags and noise imposed by model and model

parameters.

These features are used as inputs in the Random Forests classification algorithm,

which outputs group identity (ACS/CAD).
4.4 ACS/CAD Classification using Random Forests

The core objective of any classification method is to label a collection of data/mea-
surements using certain features [105]. Here we use Random Forests [77] which is

formed by aggregating an ensemble of decision trees [106].
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4.5 Decision Tree

A decision tree [107, 108, 106] divides the feature space into a number of non-
overlapping regions. The regions have an equivalent tree representation in which
each node is a decision rule regarding class identity. Such trees are nonparameteric
and assume no particular form of the data. The task of the tree algorithm is to frame
decision rules that suit the data. Such decision rules are invariant to all monotone
transformations in the data [106]. Once a tree is formed, data points with unknown
classes are assigned a class based on these decision rules. Decision trees have been
used in the study of thrombin generation systems [109].

However, a simple tree structure is sensitive to perturbations in the data [110]
which could propagate down the tree and lead to very different class labels. The
random forest technique [111, 77], which uses an ensemble of trees and aggregates

the results, offers a solution to this problem.
4.6 Random Forests

In Random Forests, the learning process of each tree involves two types of random
subset selection. First, each tree in the ensemble is built with a random subset of
the training data. The other subset which is kept ‘out’ is called as the out-of-bag
(OOB) samples. These OOB samples are used for finding internal estimates such as
error rates. Second, each decision rule in a tree is made only using a random subset
of all features. This avoids the classification results being unduly biased by a few
sensitive features most of the time. Such classification results aggregated from many
trees can capture complex and highly nonlinear class boundaries. It is well known
[112] that the method avoids overfitting of the training data, a feature which is vital
when there is limited or scarce data.

Random Forests methods are known to perform well in a variety of fields such
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as in gene selection in microarray data [113], and in functional studies of chemical
compounds [114]. In empirical studies, Random Forests compares well with other
classification algorithms [115, 116], and performs consistently well in high-dimensions
[117]. Use of Random Forests in clinical studies include study of blood proteins in
Alzeimer’s disease [118, 119].

A key feature of the Random Forests approach is their ability to provide reliable
internal estimates to monitor error rates, and it has sharp measures to rank signifi-
cance of features. In particular, we made use of OOB error rate and mean decrease
in Gini index (MDGini) (see below). Since this error rate does not involve data used

in training a given tree, using this error rate provides inherent cross validation [120].

e OOB Error Rate: OOB samples are used to find error rates for each tree in
the ensemble, and all such error rates are averaged to get the OOB error rate.
Empirical studies suggest OOB error rates are good estimates for generalization
error [120, 77]. We used OOB error rates to assess the accuracy of the classifiers

which are reported as percentages of (1.0 — OOB error rate).

e Feature Significance Measure - MDGini: Feature significance was inter-
preted using a Random Forest importance measure known as ‘Mean Decrease
in Gini index’ [78]. Typically, the decision rules in the trees are not pure in
the sense that the corresponding region in feature space is heterogeneous; i.e.,
there is a mix of data points from all classes (in our case 2). Gini index (or
Gini impurity) [110] for a decision rule is a measure of this mix; it is zero only
when the decision rule is perfect (the region is homogenous). It is maximum

when the mix is the highest (half-and-half mix from both the classes).

MDGini involves randomly permuting OOB sample data corresponding to the

decision rule in a tree, and estimating the change (decrease) in Gini index. If
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the decrease is high while perturbing a feature, it suggests that the classification
is highly dependent on that particular feature. This provides an information-
theoretic feature significance measure. It inherits the invariance property of
the decision rules, i.e., absolute values of the features do not matter. This is a
very sharp feature significance measure (see Figures 1, 2 and 6 in [121]). We
use MDGini here to find even minute differences that are significant between

ACS/CAD.

We used the ‘randomForest’ package in R [122] for our analysis. For each Ran-
dom Forest classifier, 501 trees are used in the ensemble. To account for statistical
variation between runs, we report mean and standard deviation (SD) of classification

accuracies based on 50 runs.
4.7 Classification Performance of the Entire System

Classification using initial factors has a mean accuracy of 88.13% (Table 4.1).
Conventional features of {Xa and active thrombin classify with lower mean accuracies,
82.58% and 81.04%, respectively. Using all PCHIP coefficients and all 200s-MA
values result in classification accuracies of 88.59% and 88.78% respectively, which
are slightly better than using 8 initial factors. At this point, one might wonder
if combinations of initial conditions suffice to characterize the system. However,
we note that the same set of initial conditions could give different dynamics if the
reaction network is perturbed (say, rate constants are changed due to a drug or a
mutated form of a coagulation factor). Hence, studying initial conditions might not
suffice to characterize the dynamics of the system. Moreover, studying the dynamics
of chemical species gives more physiological insight about the underlying process.

(Classification accuracies quantify the information in various features with respect

to ACS/CAD classification. Although, minimum and maximum accuracies in Ta-
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Table 4.1: Classification accuracies (%), mean (SD), of different sets of features.
PCHIP and moving average features classify better than conventional parameters,
and slightly better than all nonzero initial conditions. Every year ~ 660,000 Ameri-
cans have a coronary event [2]. A 7% improvement i